Theory Challenges and Opportunities of Mu2e-II RPF Townhall Meeting

Léo Borrel (for the Mu2e-II theory group)

California Institute of Technology

October 2, 2020

LOI: https://www.snowmass21.org/docs/files/summaries/RF/SNOWMASS21-RF5_RF0-TF6_TF0_Heeck-043.pdf

Introduction

Lepton Flavor Violation (LFV) will have a major role in the next decade because:

- Multiple experiments probing multiple signatures with a significant increase in sensitivity:
 - $\mu \rightarrow e\gamma$: MEG II
 - $\mu \rightarrow ee\bar{e}$: Mu3e
 - $ightharpoonup \mu$ N ightharpoonup eN : Mu2e, COMET, DeeMe
- Sensitive to new particles as heavy as $10^4 \, {\rm TeV}$ (far beyond LHC reach for direct detection)
- Sensitive to many different Beyond the Standard Model (BSM) models

Theoretical inputs for Mu2e(-II)

 Decay-In-Orbit (DIO) spectrum calculation for Al target:

$$rac{m_{\mu}}{\Gamma_0}rac{d\Gamma}{dE}pprox 1.24(3) imes 10^{-4}\left(rac{E_{max}-E}{m_{\mu}}
ight)^{5.023}$$

- Precise calculations are required as DIO are a irreducible SM background
- Need to repeat the calculations for Mu2e-II target material

R. Szafron, and A. Czarnecki, *High-energy electron from the muon decay in orbit: Radiative corrections*, Phys. Lett. B 753 (2016)

DIO spectrum for AI target

Choice of stopping target

- Mu2e(-II) will use a ²⁷₁₃Al stopping target but can use another material if a signal is observed
- Z dependence of the conversion rate on the stopping target material can then distinguish between different BSM models
- 2 contributions: spin-independent (SI) (A² rate enhancement) and spin-dependent (SD)

Z dependence

FIG. 1: Z dependence of $\mu \to e$ conversion rates for some example scenarios

R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002)

V. Cirigliano, R. Kitano, Y. Okada and P. Tuzon , On the model discriminating power of $\mu \to e$ conversion in nuclei, Phys. Rev. D 80 (2009)

Pros and cons of other materials

Good complementary materials to $^{27}_{13}$ Al:

- heavy nuclei (Pb, Au)
 - strong signal and good discrimination power
 - ightharpoonup short muon lifetime ightarrow increased pion background
 - low sensitivity to SD contribution
- another light nucleus ⁷₃Li
 - weaker signal and discrimination power
 - long muon lifetime
- **3** 48 Ti
 - similar rate as Al
 - ightharpoonup spin-0 ightharpoonup no SD contribution
 - can use $^{47}_{22}\mathrm{Ti}$ (spin-5/2) or $^{49}_{22}\mathrm{Ti}$ (spin-7/2) to measure SI contribution

Snowmass Mu2e-II theory LOI

Exotic signals

- $\mu^- \rightarrow e^+$:
 - ightharpoonup also violate lepton number ($\Delta L = 2$)
 - requires neutrinos to be Majorana particles
 - ightharpoonup higher dimensional operators ightharpoonup more suppressed signal
- $\mu \rightarrow eX$ where X is a light new boson (Majoron, axion, Z')
 - weak constraints: BR $\approx 5 \times 10^{-5}$

$\mu \rightarrow eX$ electron spectrum shape

FIG. 2: The tail of d $\Gamma(\mu \to e\nu\nu)/dE_e$ (black, dashed) near the endpoint [21]. Following Ref. [37] we also show the tail of d $\Gamma(\mu \to eX)/dE_e$ corresponding to BR($\mu \to eX) = 5 \times 10^{-5}$ (just below the current limit [324, [35]) for two values of m_X .

different shape of the electron spectrum tail close to the electron energy $E_{conv} \approx 105 \; MeV$:

DIO:
$$\propto (E - E_{conv})^5$$

exotic:
$$\propto (E - E_{conv})^3$$

Summary

- Mu2e and Mu2e-II will achieve remarkable sensitivity to LFV via μ -to-e conversion in nuclei
- The theory group provides precise calculations of SM background, guide the choice of target materials, and explore new physics signatures that can be probed by these experiments